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This article studies the relationship between games of search on a compact
metric space X and the absolute epsilon entropy I(X) of X. The main result is
that I(X) = —log v}, v being the lower value of a game on X we call “restricted

hide and seek.”

I. Introduction

Let X be a set, S a collection of subsets of X with
US = X. The two-person zero-sum game “hide and seek”
G(X,S) is played as follows. Player 1 (the “hider”)
chooses a point x€ X, and player 2 (the “seeker”) chooses
s€S. If xE€s, player 1 pays player 2 one unit; otherwise
no payoff occurs. Let us denote the value of this game,
if it exists, by v. (We assume that X has enough struc-
ture so that mixed strategies can be defined.)

Now, for each integer N, let cy be the smallest integer
such that the cartesian power X¥ can be covered with
cy sets from S¥, and let

¢ = limcy/¥
Now

The main theorem of a previous paper (Ref. 1) was that
if X is finite, v = ¢, It is the object of this article to
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study the relationship between v and ¢ when X is a
compact metric space, and S is the set of closed spheres
of radius e,

Our first main result (Theorem 1) is that in this
situation, the game G still has a value. For finite X,
von Neumanns fundamental theorem on finite two-
person zero-sum games immediately implies that v exists,
and so in Ref. 1 this problem did not arise.

Our second main result is that ¢ = v is not true in
general, but rather that ¢ = (v*), where v* is the best
expected gain the “seeker” can guarantee himself when he
must restrict his sets to a finite subset of X he has chosen
in advance. It is always true that v* < v, and for a fixed
X, v* = v except for at most countably many values of
€. In Section IV, however, we give an example of a
compact metric space for which v* < v. In Section V,
we prove that ¢ = (v*).
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These problems arise in information theory. The
logarithm of the limit ¢ is the least average number of
bits per sample necessary to describe X modulo S; ie.,
to identify an s containing x, when block coding is
used, and when there is no a priori probability distri-
bution on X. We shall show at the end of Section V
that —log v represents the maximum, over all Borel a
priori probability distributions on X, average number of
bits per sample necessary to describe X to within an
ambiguity of €, when variable-length coding is used.
Thus, when v = ¢ (the usual state of affairs in spite
of our counterexample), there exist probability distri-
butions on X which render variable-length coding
useless.

ll. General Hide and Seek

If the hider chooses his point x according to a prob-
ability distribution A on (a Borel field containing the
points of) X, we say he uses strategy A. Similarly a
strategy u for the secker is a probability distribution on
(a Borel field containing the points of) S. Let E =
{(x,5):xEs}, a subset of the product space X X S. The
expected value of the payoff, given that the hider plays
strategy A, for the hider as that strategy which always
A X p being the product measure induced by A and p
on X X S.

If the hider uses a fixed strategy A, then from his
point of view the worst possible expected payoff is

sup o(\,p)
um

Hence he will choose a A which makes

sup U()\MU“)
m

as small as possible. Thus we define the upper value of
G(X,S) as

0;(X,S) = inf sup v(Ap) (1

A M

Similarly the seeker will choose a p which makes

inf o(A,p)
u

as large as possible, and we define the lower value of
G(X,S) as

v(X,S) = sup inf v(A,u) (2)

n A
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It is an easy exercise to show that v, < v If it happens
that v, = vy, we denote this common value by ©(X,S),
and say that the game G(X,S) has a value. If the game
has a value, then for every 5 > 0, there exist strategies
A and u such that if the hider plays A, his expected loss
is <v(X,S) + 4 no matter how the seeker plays, and if
the seeker plays u, his expected gain is >v(X,S) — 4
no matter how the hider plays. If it happens that there
exist strategies A for the hider which guarantee an
expected loss no greater than v(X,S), these strategies are
called optimal strategies. Optimal strategies for the
seeker are defined similarly.

There is another form of the definitions of v, and v,
which will be useful in what follows. By the definition
of product measure we can write v(A,u) as either of the
integrals

o(A,u) Zﬁu(star(x))d/\

= [ xora

where star(x) = {s€S|xEs}. Now if we define the pure
strategy X, for the hider as that strategy which always
chooses x; i.e., A(x) =1, A(x') =0 if &’ 5£x, we see that
p(star(x)) = v(Agp). Similarly, if n, is a pure strategy for
the seeker, A(s) = v(A,ps). Thus from Eq. (3), we obtain
the estimate

(3)

0(Ap) < sup A(s) = sup v{A,us)

s ES s ES

Hence, for a fixed A,

sup v(A,p) = sup v(Aps)

B Y
and so
0p(X,S) = inf sup A(s) 4)
Py
and similarly
v,(X,S) = sup inf p(star(x)) (5)
K sex

Let us remark finally that if the set X is finite, it is a
consequence of the fundamental theorem of finite two-
person, zero-sum games that G(X,S) has a value (Ref. 2,
Chap. 7).
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lll. Hide and Seek in a Compact Metric Space

For the remainder of the article, X will be a compact
metric space, and S will be the set of closed spheres® of
radius € for a fixed e: sd{x) = {y€X:d(y,x) < €}. This
game is denoted by G(X,e). In this case strategies for
the hider and the seeker will both be Borel probability
distributions on X, since the seeker need only specify the
center of the sphere he wishes to select. In the product
space X X X, the set E = {(x,y): d(xy) <€}, and for
strategies A and p, v(A,u) = (A X p)(E). Before proceed-
ing we need a result on weak convergence.

Let B(X) be the space of all Borel probability distribu-
tions on X, and C(X) the space of real-valued continuous
functions on X. The topology of weak convergence on
B(X) is defined as follows (Ref. 3, Chap. II}): u,— p in
B(X) if for every f€C(X) ffdy, — ffdu. B(X) is compact
in this topology (Ref. 3, p. 64), and if F is any closed
subset of X and p,— p, then (Ref. 3, p. 40)

p(F) > lim sup p, (F) (6)

n—>

We now consider probability distributions on the
product space X X X. The following proof, as are all
proofs in this article, is omitted.

LemMma L. If p = pand A, — X then p X A, — p X A

Lemma 2. If A, — xand p,— p, then

o(A,p) > lim sup v(A )

n—» oo

We now have the main theorem of this section.

TueoreMm 1. G(X €) has a value v(e) which is continuous
from above in €, and the secker has an optimal strategy.
For every 8§ > 0 the hider has a strategy with finite sup-
port which guarantees that he loses no more than v(e) + 8.
The set of optimal strategies for the secker is closed in
the topology of weak convergence.

We conclude this section with three examples which
show the necessity of certain of the hypotheses in Theo-
rem 1.

Example 1. The hider need not have an optimal strat-
egy. X will be a countable subset of the unit circle,
under the geodesic metric. Let x, = exp (#i/2™1). X will

1However, the results in this article also hold when S is the set
of closed sets of diameter < e.
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consist of the points =x,, =+ix, for all n. Then X is
closed and so compact. Let € = #/2; for each x€X we
adopt the abbreviation s(x) = sz,.(x). Then if the secker
plays =1 each with probability 1/2, his expected gain
against any pure hider’s strategy will be > 1/2 and so
vy, > 1/2. On the other hand if the hider uses the strategy
Ay defined by Ax(x) = 1/2N for x = ==x;, +x., -+, +xy;
Ax(x) =0 otherwise, then Ay(s(x)) =1/2+ 1/2N if x =
+ix, for some n < N; Ay(s(x)) = 1/2 otherwise, and so
the hider’s expected loss is < 1/2 4 1/2N for any pure
seeker’s strategy. Thus v, < 1/2 + 1/2N for any N, and
so G(X,7/2) has value 1/2. If, however, the hider had an
optimal strategy A, A(s(x)) < 1/2 for all x€X, then it
would follow from A(s(x)) + AMs(—x)) = 1 + Aix) +
M —ix) that A(ix) = A(—ix) =0 for all x€X, a contra-
diction.

Example 2. The set of optimal strategies for the hider,
if nonempty, need not be closed. Let X be the closed
interval [0,4] under the usual metric, and € = 1. Then
o(X,€) = 1/2, and if A, is the strategy 1,(0) = M2 + (1/n)
= 1/2, A, is optimal for all n > 1. However A,— A where
M0) = A(2) = 1/2, but A itself is not optimal since if the
seeker always picks the sphere centered at 1 his gain
against A is always 1.

Example 3. The seeker need not have finitely based
nearly optimal strategies such as the hider has; i.e., it is
possible that there exists § >0 such that if u is any
finitely based strategy (a probability distribution on X
which is zero outside a finite subset of X), then p(se(x))
< v(e) — § for some x&X. This example is best under-
stood in the context of a game we call “restricted hide
and seek,” introduced in the next section, so we postpone
it until then.

IV. Restricted Hide and Seek

In restricted hide and seek, before play begins the
seeker is required to choose a finite subset X’ of X (un-
known to the hider) and then must always choose a
sphere of radius € whose center is in X’. Of course, a
referee who knows X’ will be needed to keep the seeker
honest, since there is no way the hider will be able to
tell whether or not the seeker is staying in X’. We de-
note this game as G'(X,e) and define v} (e), v}.(€) as in
Section II. Let

v(e —) = lim v(¢)
€1 e

LemMa 3. v(e—) < vj(e) = v(e).
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LemMma 4. v,(€) = v(e) with at most countably many
exceptions.

If X has only two points xy and d(xy) =1, then
o(X,1-)=1/2 but v(X,1) =0};(X,1)=1. It is much
more difficult to give an example which shows that v}
may be strictly less than v,. We now mention such an
example. Details are omitted.

Example 3. There exists a compact metric space X
such that v(X,1—) < v} (X,1) < v(X,1). Let C be a circle
of circumference %, d the geodesic metric on C, and let
H. be the space of closed subsets of C under the Haus-
dorff metric d’;

d’(E,F) = max (max min d(e,f), max min d(e,f))

¢e€FE f&F f€F ¢&E

H, is a compact metric space under d’ (Ref. 4). The set
Z of all closed subsets of C of legesgue measure 2 is a
closed, hence compact, subspace of H; and is therefore
separable. Let {B;, i > 1} be a countable dense subset of
Z. No finite subset {b;} of C has the property that every
B; contains a by. For {b;} can be covered by an open set
of arbitrarily small lebesgue measure and so there exists
a set BEZ and d, > 0 such that d(B,b;) > d, for all k.
Thus a B; such that d’'(B,B;) < d, cannot contain a by,

The space X of this example will have C as a sub-
space, the metric restricted to C being the geodesic
metric. It also contains points a;a;, i > 1, where

d(a,c) = lforceC
d(a,a;) = 27
d(ai,a;) = |27 — 27|
d(ai,c) =1+ min (d(B;,c),2"") forallc€C

In addition X contains three points ¢f,c5,c; which are to
be thought of as outside the circle C and equally spaced
in angle. The point on C closest to ¢ is labeled c¢;. The
metric is extended as follows:

d(c,,a) = d(c},a;) = 1?? for all i,j.

d(ccs) = ’—g
7 , 1
3 + d(ci,c), ifd(cic) < 3
d(c),c) = 1 if% < dlese) <1 forceC
d'(ci,c), if d(ci,c) > 1
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We assert that (X,d) as defined above is indeed a com-
pact metric space, but omit the tedious verification that
d satisfies the triangle inequality. Compactness is best
verified by checking sequential compactness, which is
equivalent to compactness for a metric space. The space
X is sketched in Fig. 1, topologically embedded in three-
space.

It can be shown that

WXl-) =5, olXD=F, X127y

Details are omitted.

V. Absolute Epsilon Entropy

Let us use the term “eset” to describe a subset of a
compact metric space which is contained in some sphere
of radius €. The epsilon entropy H{X) is then defined
to be log.N, where X can be covered with N e-sets, but
no fewer. H(X) can be interpreted information the-
oretically as the minimum average number of bits per
sample needed to describe X to within an error of at
most €.

If (X;,d:), i=12,---,n, are compact metric spaces,
we shall make the cartesian product X; X X, X --- X X,
into a compact metric space by defining

(%, xa), (61, %0)) = max d(x;,x7)

With this definition, products of e-sets are e-sets and pro-
jections of e-sets onto the coordinate spaces X; are €-sets;
hence it is a suitable definition for dealing with uniform
approximation. If X; =X for all i, we shall write X"
instead of X; X -+ X X,..

The absolute epsilon entropy 1(X) is defined by

L(X) = lim = H(x")
That the limit exists is a consequence of the simple
property H(X™™) < H{(X") + H{(X™). I{X) can be inter-
preted as the minimum average number of bits per
sample needed to describe X to within € when an un-
limited number of samples can be stored prior to trans-
mission.

Theorem 2, the main result of this article, identifies
I(X) in terms of the game “restricted hide and seek.”

THEOREM 2. I(X) = —log v} (X;e).
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Theorem 2 requires two lemmas.
Lemma 5. H(X) = —log v} (X;e).
LemMa 6. 0} (X X Y,€) = v} (X,€) v (Y,€).

We conclude the article with two corollaries to
Theorem 2. Let p be a Borel probability measure on X,
and let H,(X) be the infimum of over all partitions

each A; being a Borel e-set of X, of the Shannon entropy
= 3= P(4i) log p(A;)

He, is called the €p entropy of X (Ref. 5). Also define
the absolute ¢p entropy of X by

1
Ip(X) = lim n H ¢pn(X")

p" being the product measure induced on X» by p.
Ie,(X) then represents the minimum average number

of bits per sample necessary to describe X with an error
not exceeding €, with p as the a priori probability dis-
tribution on X, when arbitrarily long variable-length
codes are used. Combining Theorem 2 with Theorem 2
of Ref. 1, which had —log o(X,€) = sup I, (X), we
conclude: ?

Corollary 1.
I(X) = sup I ,(X)
P
whenever v} (X,e) = v(X,€); in particular equality holds
for all but at most countably many e.

Hence most of the time “nature” can choose a p on X
which is so “bad” that prior knowledge of p could not
be used to increase the transmission rate.

Our final result is a simple consequence of Theorem 2
and Lemma 6, and tells us that one cannot save anything
by encoding two sources simultaneously:

Corollary 2. 1(X X Y) = I(X) + I(Y).
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Fig. 1. The space X of counterexample 3
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